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The numerical evaluation of certain two-centre molecular integrals involving one-electron 
Green's functions is considered. Considerable improvement is reafized over earlier calculations when 
semi-analytic methods are employed using Fourier transforms to reduce the order of the multiple 
quadratures. The resulting triple integrals are evaluated using improved polar grids which yield almost 
machine accuracy on utilizing Gaussian quadrature prescriptions. For illustration, integrals arising 
from two alternative variational functionals are evaluated and the corresponding energy curves 
compared for the H + ion, thus providing an assessment of the validity of the Born-Oppenheimer 
separation embodied in one of the functionals. 
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I. Introduction 

In a previous paper, Hall, Hyslop, and Rees [1] proposed a variation principle 
for molecular energies involving the use of Green's functions. Two alternative 
functionals were introduced, the simpler of which was derived using the usual 
Born-Oppenheimer approximation. This functional was applied to the calculation 
of an upper bound for the ground state energy of the hydrogen molecular ion HI .  
The six-dimensional Green's function integrals involved were evaluated by using 
semi-analytical techniques employing two-centre elliptic co-ordinates together 
with a Fourier transform representation of the one-electron Green's function. By 
this means, the singularities associated with the .potential energy and with the 
Green's function were effectively removed and the integrals were reduced to, at most, 
triple quadratures. The resulting triple integrals were then evaluated using a basic 
Gauss-Legendre product formula (Davis and Rabinowitz [2]) with a 5 3 point 
grid. The regions over which the integrations were to be carried out were finite 
ellipsoids and the suggested routine was seriously in error when the size of these 
volumes increased beyond a certain limit. Obviously, modification of the integra- 
tion procedure is necessary to allow for formulae of the Gauss-Laguerre type to 
be used, particularly when the trial functions employed are to be defined over all 
space. This modification is one of the themes of the present paper. 

Again, it is of interest to extend these semi-analytical ideas to cover the case 
of the alternative functional suggested in [1], so that a direct comparison is made 
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possible and the validity of the Born-Oppenheimer approximation assessed 
accurately in this particular case. 

Furthermore, the direct numerical evaluation of the integrals involved in 
both functionals has been considered by Hyslop I-3]. The Green's function singu- 
larity was removed by a subtraction technique and reductions in computing time 
were realized by employing an empirically determined extrapolation formula 
of the Richardson type. Once again, the limitations on the accuracy produced 
by this method were such that the approximate energies obtained from both 
variational functions were indistinguishable. In the present work, the possibility 
of improving these results is investigated. 

The integrals involved in this particular application are considered in some 
detail, since they are typical of the class of integral which arises in one-electron 
Green's function calculations and, indeed, the techniques described are very 
widely applicable to molecular integrals in general. 

2. The Variational Functionals and Formulation of  the Integrals 

On using the scaling techniques described in 1-1], the variational functional 
as derived using the Born-Oppenheimer approximation may be written as 

Ir = I / J  = (o)VIG[ Va~)/(col  V i m ) .  (1) 

In this equation ~o(Q) is the trim function of the scaled variable q (~ = ~r) and G is 
the operator corresponding to the scaled one-electron Green's function 

G(Q,, ~o2) = - exp( - 012)/(2g~ 012) (2) 

w i t h  Q12 = [Q1 - -  ~21. 
In the case of the hydrogen molecular ion, H~, the electronic potential energy 

V(Q) is given by 

V(Q) = -- (1/Q a "t- 1/0b) (3) 

where Q, and Qb are the distances between the electron and the protons A and B 
whose separation is P =  xR (all distances being scaled). 

The approximate electronic energy corresponding to the functional (1) is 

E = - �89 X 2 (4) 

yielding the total energy of the molecule as 

1 2 1 
w = - ~ ~c + ~ (5) 

assuming the usual Born-Oppenheimer separation. 
The alternative functional is written as 

K'= I ' / a ' =  ( ~ V ' I G [  V'  oo)/((ol  V' lo))  (6) 

in which V' is the total scaled potential energy according to 

V'= - (1/0'. + 1/0;) + 1/P'  (7) 
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in which all distances have been subjected to the scaling factor to' and the cor- 
responding total energy is - ~c'2/2. 

Values of ~: are then obtained as functions of the independent variable P = ~cR 
from Eq. (1) with corresponding internuclear separation Ply. Similarly, ~c' is 
given as a function of P' = K'R from Eq. (6) at separation P'/~:' and so energy curves 
may be obtained and compared. 

It is natural to express the above integrals in terms of the two-centre elliptic 
coordinates (2, #, ~b) where 

2=(ra+rb)/R, #=(ra--rb)/R (8) 

with the usual notation, q5 being the azimuthal angle about the internuclear axis�9 
To illustrate the integration techniques, the simple united atom approximation 
of the earlier work, namely 

co(Q) = exp(-  c2) (9) 

is again utilized, the function being regarded as already scaled, since it involves 
only ratios of distances. As noted in [3], the normalization integrals J and J' are 
immediate and the analytical results are quoted in the earlier work�9 

The main integrals I and I '  may be conveniently expressed in the form 

I = - �88 S 01-2%xp(-Q12)Q(2,, 22)dz (10a) 

and 

I' = 1 t4 -- ~P S Q12%xp(-012)Q'(2a, 22)d~ (10b) 

where, for abbreviation purposes, 

Q(21, 22)dz = e x p [ -  c(21 +2z)]212zd21d22dlqd#zd(o (l la) 

and 

Q,(21,22)dz_exp[_c()~l +22)][21 1 2 - ~(21 - # 2 ) 1  

�9 [2 2 - �88 - #2)]d21d22d#1d#zd(o (1 lb) 

with 1<__2<o0, -1__<#=1 and 0=<~=<27r. 
The scaled distance 012 is given by 

402 zIP 2 = (22 - 1)(1 - #5) + ( 22 - 1)(1 -#2)  + (2j# 1 _ 22#2)2 

- 2 [ ( 2  2 - 1)(1 -#2)(22 - 1)(1 - #2)31/2coscb (12) 

in Eq. (10a), whilst in (10b) P is replaced by P' in this expression. The angle q5 
represents the difference in azimuthal angles (4h-~b2). 

3. Direct Numerical Evaluation of the Integrals 

The basic prescription for the numerical evaluation of the integrals (10a) and 
(10b) is a five-dimensional Gaussian product formula of the type discussed by 
Davis and Rabinowitz [2] or by Stroud and Secrest [4], full details of the method 
adopted being presented in [3]. As pointed out in [3], the main difficulty in the 
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evaluation of these integrals is the wellknown one associated with the presence 
of the 0~-z ~ singularity and a subtraction technique was proposed to deal with this. 
The method involved the numerical evaluation of the integral 

St = �88 f ON [1 - exp( -  O, 2)]Q(2t, 2z)dz (13) 

the integrand having been smoothed by the removal of the singularity. It was then 
necessary to evaluate analytically the subsidiary integral 

A, = �88 I o;)Q(2,, 22)d  (14) 

and its treatment was described in 
given by Ia where 

[3]. The approximate value of I was then 

I 1 = S  1 - A  1 . (15) 

This subtraction technique produced a considerable improvement in con- 
vergence. Hence, in the present work, the possibility of producing further smooth- 
ing of the integrand by extracting additional terms in the Taylor series for exp( - 0,2) 
is considered. Thus, the integrals 

$2 = �88 S Qi-] [1 - 0,2 - exp ( -  0a 2)]Q(2~, 22)dz (16) 

and 

A 2 = �88 ; Q('h, ,~2) d~ (17) 

are introduced and correspond to the approximate I value of 

12 = S 2 - A ,  +A2.  (18) 

At the next stage, we consider 

Sa = �88 S Qi-2 ~ [1 - 0,2 + 2/-0122 - exp( -  ~12)]Q(2~, 22)d~ (19) 

and 

A3 = i F ,  ~ 0,2Q(21, 22)dz (20) 

with 

I 3 = $ 3 - A 1  + A z -  �89 (21) 

and so on. 
It will be noted that if the implied numerical integration of Ai contained within 

the evaluation of Si is exact, then no improvement is made in convergence in 
going from S i_ , to Si (i = 2, 3 . . . .  ) and consequently I i = I i_ ,. This is indeed the 
case when i is even, for it is clearly seen from Eq. (12) that, when even powers of 
~12 are involved, exact values of the analytic integrals Ai could be obtained from 
the NS-point Gaussian numerical integration grid. The required condition would 
be N > 2 i - 3  for i=2,  4, 6 . . . . .  Hence, for instance, I2=I1 . Therefore, only signi- 
ficant improvement in convergence rates can be made by investigating I i where i 
is odd. In practical terms, the integrals A2, A,, A6,... do not improve the con- 
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vergence of the numerical evaluation of Si and, indeed, are effectively ignored. 
Thus, for example, I3 and $3 are taken in practice to be 

-1  1 2 S3 = 1 p4 ~ 022 [ 1 + ~ 012 - exp(- 012)] Q()L1, 22) d'c 

and 

(22) 

13 = $3 - A1 - 1A3 (23) 

in contrast with the recommendations of Eq. (19) and (21). 
The analytical evaluation of the auxiliary integrals Ai is effected here by using 

the Fourier transform techniques described in Section 4. In the earlier work [3], 
A 1 only was required and the Neumann expansion ofo;21 (Harris and Michels [5]) 
was utilized on that occasion. 

Similar techniques are applied to the evaluation of I'. 
As an example of the results obtained, comparison is made between 11 and 13 

for the particular values of the parameters P=3.0  and c=  1.3. The results are 
presented in the following table, the exact value of I being obtained using the 
semi-analytic methods described later. (Exact value = - 3.28693). 

h I3 

-3.21395 

-3.23753 

-3.25212 

-3.26144 

-3.26755 

-3.29611 

-3.29214 

-3.28940 

-3.28817 

-3.28755 

3.1. The Use of  Shanks' Non-Linear Transformations to Accelerate Convergence 

On denoting the value o f l  3 given by using an N s grid by TN, it may be observed 
that whilst some improvement over the 11 results is achieved, the sequence {TN} 
is converging only slowly towards the exact value of I. 

The Shanks technique [-6] involves the transformation of the sequence {TN} , 
N = 0 ,  1, 2, ... into the sequence {Bj,N} N-- - j , j+  1, ... by means of the operators 
ej according to the relationship 

{Bj,N} =ea{TN}, j =  1, 2, . . . .  (24) 

The general term in {Bs,N} may be written as the ratio of two determinants 
of order (j + 1). Details of the transformations together with restrictions imposed 
and conditions to be satisfied are given in Shanks' paper. The most frequently 
used transformation is el which produces the simple form 

Bl,u=(Tu+ x Tu- a -  T.2)(Tu+ I + Tu- I -  2TN) - ~ (25) 
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which is, of course, the familiar Aitken 62 extrapolation procedure. It was essential- 
ly this result which was used in 1,3] to produce empirically an acceleration technique. 
Here, the use of the more general Shanks' transformations is considered systema- 
tically. It is worth while pointing out that transformations of this type have been 
employed recently by various authors [7-9], in quadrature investigations. 

Representative results are presented in the following table for the case P = 3.0 
and c = 1.3. (Exact value = - 3.28693). 

N T N e~{TN} 2 3 eR{T N } e~{T N} e2{T N} 

- 2 . 7 5 9 4 2  

- 3 . 2 6 4 3 6  

- 3 . 2 9 6 1 1  

- 3 . 2 9 2 1 4  

- 3 . 2 8 9 4 0  

- 3 . 2 8 8 1 7  

- 3 . 2 8 7 5 5  

-3.29824 

-3.29258 

-3.28333 

-3.28715 

-3.28694 

- 3 . 3 0 7 1 6  

- 3 . 2 8 6 0 3  

- 3 . 2 8 6 9 5  

-3.28691 - 3 . 2 8 7 2 3  

-3.28694 

The results seem to indicate that the subtraction of the further two terms in 
the expansion of exp(-0~2) yields an increase in accuracy of between 1 and 2 
significant figures in the evaluation of I. Thus, the application of Shanks' accelera- 
tion technique produces 5-figure accuracy, provided values of N as large as 
N = 8 are tolerated. 

Similar remarks apply to the evaluation of I '  and it is concluded that, in 
practice, the number of function evaluations required may still be prohibitively 
large, even when smoothing of the integrand is effected by subtraction techniques 
and acceleration procedures are employed. Consequently, attention is now given 
to the alternative method involving the extension of the semi-analytical Fourier 
transform prescriptions. 

4. Fourier Transform Techniques 

The use of Fourier transforms described here is analogous to the convolution 
methods suggested by Prosser and Blanchard 1-10] and by Geller 1-11] for the 
calculation of certain two-centre integrals and is also mentioned in the review 
paper of Harris and Michels 1,-5]. 

Thus, when integrals of the form 

~ f a * ( Q ~ ) f 2 ( o 2 ) f 3 ( Q 1  - -  #2)dQldQ2 (26) 

are considered, separation of the variables Q~ and #z is achieved by introducing 
the Fourier representation 

f3(Q1 - Oz) = ( 8n3)-1 ~ F3(s)exp1,is. (Q1 - Q2)] ds , (27) 
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where 

F 3 (s) = ~ f3(p)exp(- is. Q)dQ. (28) 

Consequently, the integral may be expressed as 

~f~'(el) f2(e2)f3(e ,  - ez)delde2 = (87~3) - 1  ~ F*(s)F2(s)F3(s)ds (29) 

where 

F,(s)  = ~fl(q)exp( - is.  q)dq (30) 

and 

F2(s) = ~ f2(e)exp(- is .  o)dff. (31) 

The basic relation (29) was used in [-1] to reduce the 1 evaluation to a triple 
quadrature in the worst cases considered. However, it is, of course, a very general 
result and in the present work it is also applied by way of illustration to the 
calculation of the auxiliary integrals AI, A2 and A a and also the previous work is 
extended to cover the alternative integral 1'. 

4.1. Evaluat ion o f  the Aux i l iary  Integrals  AI ,  A2, A 3 . . . .  

Previously, Hyslop [3] evaluated the integral 

A, = (2re)- 1 ~ co.(e,)v(e~)ei-2 ~ V(#:)co(ez)de,do 2 (32) 

by using the Neumann expansion of Q~-2 ~ in terms of two-centre coordinates and 
the earlier results are useful for checking purposes. 

In the present paper, Fourier representations for Q722 may be obtained for 
n = 1, 3, 5 . . . .  corresponding to AI, A3, A5 ..... by means of the formal result 

(2re) -1 ~ ~"-2exp(--is. Q)dQ=2(n- 1)! ( -  1)Cn-1)/2s -("+1) (n=1 ,3 ,5 , . . . ) .  

(33) 

The integrals A. may therefore be expressed as 

A, = (2re)- 1 ~ (D*(~I)V(~I)Q]2 2 V(Q2)CO(Q2)dQldQ 2 (34) 

--- 2 (n-  1)! ( -  1) ("- 1)/2(8n3)- 1 ~ [F(s)12s-(n+ 1)ds ' (35) 

where 

F(s) = ~ co(e) V(e)exp(-  is. e)de. (36) 

This two-centre Fourier transform with co(Q) and V(Q) given by Eq. (9) and (3) 
respectively is easily reduced to the form 

F(s) = - (4toP~s) ~,~ exp( -  c2)sin(sPr (37) 

in which 

2 = (4 2 + 1 - u2) ~/2 (38) 

and 

u = g./~, (39) 
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R being the vector A--~. The details of the transformation, which involves the use 
of eliptical coordinates, are presented in [1], Similar two-centre transforms have 
been considered by Laurenzi [12]. 

Substitution into Eq. (35) and change of the order of integration followed by 
contour integration over the variable s yields the expression 

A, = (8gP" + 2)(2"n)-' ~0 ~ ~ S~ e x p [ -  c(2 + 41)] [-(4 + t l ) " -  (rl - ~)qd~dtldu (40) 

with 

41 = (~Z .q_ 1 - -  U2) 1/2 (41) 

and n = 1, 3, 5 . . . . .  
Analytical evaluation is now possible and elementary analysis shows that A, 

may be expressed in terms of the family of integrals I,(7) defined by 

I,(a) = ~ 2"exp(-a2)log[(2 + 1)/(4- 1)]d2 (42) 

with n = 0, 1, 2, 3 . . . . .  Analytical expressions for L,(a) are readily written down by 
successive differentiations with respect to a of the basic result 

L0(a ) = ~- 1 [(7 + log2a)exp(-  a) + exp(a)E 1(2~)] (43) 

(cf. Gradshteyn and Ryzhik [13, pp. 573-574]). 
In this formula 7---0.5772... is Euler's constant and E l ( z  ) is the exponential 

integral 

El(Z ) = ~ t -  aexp( - zt)dt (44) 

as defined by Abramowitz and Stegun [14, p. 231]. 
Analytical expressions for A~ and A 3 are easily obtained in this way, but the 

expressions are somewhat cumbersome and need not be reproduced here, since 
the derivation is entirely straightforward. 

Note also that the Fourier representation (33) is not available for even values 
of n, so that A 2, A 4, ... cannot be evaluated using the above techniques. However, 
since even powers of ~ 2  only are involved, it is immediately obvious from Eq. (12) 
that the integrals required may be expressed in terms of the standard molecular 
integrals 

~~ and ~+I/~"exp(-e/z)d/~ (45) 

(Harris and Michels [5]). The particularly simple result for A2, which is used in 
the acceleration technique for evaluating I according to Eq. (21), is readily shown 
to be 

A 2 = 2re(P/c)4(1 + c)2exp(- 2c). (46) 

In practice, of course, as pointed out in Section 3, the integrals A2, A4, A 6, ... 
do not improve the convergence of the numerical evaluation of S, and, indeed, 
are effectively ignored. 



The Evaluation of Two-Centre Molecular Integrals 319 

4.2. Analytical Reduction of the Integral 1 

The Green's function G(Q1, Q2) of Eq. (2) is replaced by its Fourier representa- 
tion 

G(Q1, Q2)= - ( 4 7 z 3 )  - t ~ exp[ - is. (el - -  Q 2 ) ] (  S2 -t- 1)-- lds (47) 

and, proceeding as in the derivation of Eq. (35), we obtain 

I = ~ S ~*(eOv(eo~(e~, egv(eg~(egde~de~ 
(48) 

= _ (4/r3)- 1 5 iF(s)[2(s2 + l)-  lds 

where F(s) is given by Eq. (37). 
This result is then processed in the same manner as above and the expression 

I = - 16riP 2 ~o ~ ~ ~] exp( -  cZ-c21 -P~l/Z)sinh(P~/2)d~dqdu (49) 

is obtained, which is analogous to Eq. (40). This is, of course, the form obtained 
in the earlier work [1]. 

Further analytical progress is not possible here and a new triple numerical 
integration procedure is suggested in Section 3, which represents a distinct 
improvement on the method suggested in Ref. [1] for this integral. 

4.3. Analytical Reduction of  the Integral I' 

The Fourier techniques are extended here to deal with the integral I' defined 
in Eq. (6) by 

I ' =  ~ co*(Q1)[V(Q1)+ 1/P']G(Q1, QE)[V(Q2)+ 1/P']a)(QE)dOld~2 (50) 

which is transformed to 

I ' =  -(4rt  3)- 1 ~ [ r , ( s ) ] 2 ( s 2  + 1)- ld$. (51) 

In this result F'(s) denotes the Fourier transform 

F'(s) = ~ a)(Q)[V(Q)+ 1 /P ' ]exp( - i s .  Q)d9. (52) 

This two-centre transform is processed in a similar manner to F(s) and it is 
easily shown that the result may be expressed in the form 

F'(s) = (riP'~s) ~ e x p ( -  c2)[(C1 + C3/s2)sinfls + (C2/s)cosfls]d~ (53) 

with 

fi = {P'/2, 

C 1 ( ~  ) = E~ , (~2  _ u 2 )  _ 4 ~ 2 ] / ~ 2  , 

C2(~) = - -  2 [ - ) ~ 2 ( 3 ~  2 - -  1) + 1 - ue]/(,,],P'~3), 

C3(~) = - -  2C2/(P'~) , 

and 

,~ ~ _ ( ~ 2  _~_ 1 - - b / 2 )  1 /2  . 
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Analysis similar to that carried out earlier enables I' to be written as 

I '= - nP '2 ~ [. ~ S~ exp[-c(2+21)]  Z L 1  ~.~=1 C,(tl)Cj(~)T~jd~dtldu (54) 

with, again, 

21 = (02 "{- 1 -- U2) 1/2 . 

The coefficients T~ which arise on evaluating principal valued contour integrals 
over the variable s in Eq. (51) are conveniently expressed in the form of a matrix as 

[ 

with 

C = exp(-  ~)coshfl, 

S = exp(-  a)sinhfl, 

where 

a = P'tl/2 and t =  n'~/2 (a > fl). 

5. Numerical Evaluation of  the Analytically Reduced Integrals I and I' 

By means of the Fourier Transform technique described above, the Q1 and Q2 
coordinates are separated and the Qi-~ singularity removed. Furthermore, the 
integrals have been reduced from five-dimensional to three-dimensional qua- 
dratures. 

The evaluation of these integrals is accomplished by sub-dividing the region 
and integrating over each subregion by means of combinations of the standard 
Gaussian Quadrature formulae (Stroud and Secrest [4]): 
(a) N-point Gauss-Legendre 

1 N ~f (x )dx  = y ( b -  a) ~ = ~  Ae(i)f[�89 - a) + �89 ( b -  a)ze(i)], (56) 

(b) N-point Gauss-Laguerre 

~ g(x)dx = 7-1 ~Ni: 1 AL(i)exp[zL(i)]g[zL(i)/7 + a] (57) 

where g(x)~ exp(-~x) for large values of x. 
The coefficients Ae(i), ze(i ), AL(i), ZL(i ) are extensively tabulated for various 

values of N by Stroud and Secrest. 
The integrals ! and I '  both take the general form 

oo qB T(P, c)= [.~ ~, I, (4, rl, u, P, c)d~dtldu (58) 

where B denotes the integrand of Eq. (49) or (54). 
The integration over the variable u is effected by means of Eq. (56) and the 

results may be expressed in the form 

= ~ Z i  :1 Ae(i)V(u,, P, c) (59) T(P, c)= ~ V(u, P, c) 1 N 
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where 

ui = �89 [ 1 + zp(i)]. 

It now remains to evaluate the set of N double integrals defined by 

cc rt V(ui, P, c ) =  ~.,, [.,, B({,  rl, u i, P, c)d{drl .  (60) 

For the evaluation of these integrals, a two dimensional polar grid is proposed, 
based on the coordinates (r, 0) defined by 

rl = ul + rcos0, { = u i + rsin0 (61) 

with 0 < r <  oo and 0 _  0 _x/4.  
It is considered that this polar grid is more convenient than a rectangular 

grid of the type used in [1], particularly when infinite regions are considered. 
The infinite range of integration is now conveniently divided into finite 

annular segments of the form shown in Fig. 1, and infinite annular segments as 
shows in Fig. 2. 

/ / 

ui r] 

Fig. 1 

u i  

o--~ 

. . . . . . .  _e-.~ ~ . . . . .  - 

ui 7] 

F i g .  2 

A pattern of annular segments covering the region of integration is chosen to 
reduce the number of points used in the numerical quadrature. The function B 
is relatively large near the apex of the region, and it is desirable to concentrate 
points in this vicinity. 

To achieve this, the range of r is first subdivided, thus forming one infinite and 
several finite annular segments. The 0 range was also split where necessary, and 
in each of the resulting finite annular regions R t, the number of points for the r 
integrations is taken as MI~, and for the 0 integrations as M2~. 
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In the present work, for a given finite region R~, MI~, and M2~ are taken to 
be M, so that the M-point Gauss Legendre rule (56) can be used for both the r 
and 0 integrations. The contribution to V, given in Eq. (60), from such a region 
(see Fig. 1) may be written as 

� 88  ~)(b - a) ~ft= ~ ZkM=I A p ( j ) A p ( k ) B ( ~ i j k  ' rlijk, Ui ' p,  c)rj (62) 

where 

r j = �89 + a) + � 8 9  a)zp(j) , 

Ok = �89 + ~) + �89 a)zp(k),  

thjk = Ui + r jcOSOk , 

~ij* = Ui + r jsinO, . 

The less stable-Oauss-Laguerre rule (57) need now only be used for the r 
integration in the outlying infinite annular segments, whose contribution is 
relatively small. The Gauss-Legendre rule is still applicable to the 0 integration. 
It is now necessary to ascertain the behaviour of B as r ~  Go along a radius vector 
defined by 0 = constant = 0', in order to fix the value of y which appears in Eq. (5?). 
It may be readily shown that 

B "-" exp(-  ?r) 

where 

7 = (c + �89 0' + ( c -  �89 P)sin0'. 

Hence the contribution to V from a typical infinite region (see Fig. 2) may be 
written as 

t 0~ M g ( f i -  ) ~ j =  1 ~,kM= ~ Ap(k)ALfj)exp(zL(j))B(~ijk, tlija, ui, P, c)r jk/Tk (63) 

where 

Ok = �89 + fi) + �89 - fl)ze(k) , 

?k = (c + �89 + ( c -  �89 

r jk = ZL(])/7 k + a ,  

~ijk = ui + r jkcosG , 

q~jk = u~ + rjkSinOk . 

6. Results Arising from the Semi-Analytic Methods 

The alternative treatment of the integrals I and I', as presented in Section 4 
and 5, represents a considerable increase in speed and accuracy of computation 
over the direct methods described earlier. An accuracy of 9 significant figures is 
obtained using approximately 1300 integration points for I, and about 1800 
for I'. 
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6.1. Processing of the Functionals ~c and K' 

The relevant formulae required to convert the numerical values yielded by 
this method into meaningful physical quantities are presented in Section 2. 

For a pre-determined value of P, the total energy W given by Eq. (5) was 
minimized over all values of the variational parameter c, in order to give a "best" 
upper bound to E o, at that particular value of P. In practice the entirely equivalent 
operation of maximizing ~c(P, c) over e was performed, giving Gpt(P). This yielded 
the energy curve 

W(R) = - �89 [Kopt(P)] 2 q- tCopt(P)/P (64) 

the value of R corresponding to W(R) being given by R = P/~copt(P ). 
Processing of ~c'(P', c) was similar giving 

W ( R )  = 1 , , 2 - ~ [•opt(P )3 (65) 

at R = n'flC'op,(n' ). 
The equilibrium separation R0 is obtained by minimizing W(R) or W'(R), 

giving Wo and W~ as upper bounds to the total equilibrium ground state energy 
of the molecule. 

The one dimensional optimization required to calculate the energy curves 
was performed using a simple quadratic fit method. The evaluation of the equi- 
librium separation R o and the energies Wo and Wd required a two-dimensional 
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1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

6.0 

8.0 

2.83652 

Table 1. Values of the energies given by the functional t c = I / J  

0.54102896 

0.86012085 

1.21625599 

1.60983262 

2.04058200 

2.50795050 

3.01127135 

3.54984899 

4.12300165 

5.37048506 

8.25477962 

1.89568 

Copt 

0.47988 

0.70664 

0.92871 

1.14787 

1.36525 

1.58161 

1.79746 

2.01316 

2.22892 

2.66138 

3.53206 

1.29432 

K opt 

1.84832990 

1.74394099 

1.64439067 

1.55295648 

1.47016881 

1.39556183 

1.32834260 

1.26765956 

1,21270871 

1.11721752 

0.96913550! 

1.49630 

I 2 
E= - yFKopt~ 

-1.70816172 

-1.52066508 

-1.35201034 

-1.20583691 

-1.08069816 

-0.97379642 

-0.88224703 

-0.80348038 

-0.73533121 

-0.62408749 

-0.46961181 

-1.11946 

W = E + I/R 

0,14016819 

-0.35803776 

-0.52981501 

-0.58465432 

-0.59064189 

-0.57506446 

-0.55016138 

-0.52177825 

-0.49278946 

-0.43788457 

-0.34846987 

-0.59194851 

a Optimum of W = - � 8 9  c ) ]  2 + 1/R over all values of P and c. 
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optimization procedure. In this case a standard subroutine based on the method 
of Powell [15] was selected. 

6.2. Numerical Results 

The energy approximations and the corresponding values of the parameters 
P, R, c are presented in Tables 1 and 2. As demonstrated by the tables, the value of 
R at which we are tabulating is not known until the calculation of• or ~c' is complete. 
Comparison of results is, therefore, most conveniently made graphically, although 
accurate numerical values are presented for reference purposes, so that the accuracy 
of any alternative molecular integration scheme which is developed may be 
assessed. 

Figure 3 illustrates the energy curves given by the method. W and W' are in 
fact indistinguishable to this scale, and are both represented by (1). The curve (2) 
is constructed from the exact values of the energies, as tabulated by Wind [16]. 
As anticipated, the approximation to the exact curve given by the functionals is 
very good in the united atom limit as R becomes small. 

Figure 4 is drawn to a larger scale, and clearly demonstrates the separation 
of the curves representing W and W'. The calculation of W' does not assume the 
Born-Oppenheimer separation, and therefore, yields a better (lower) upper bound 
to the exact energy curve. 

Table 2. Values of  the energies given by the functional to'= l ' / J '  

ir , -12 
<' E'=W'-I/R W'= - ~LKopt j P ' R Cop t opt 

1.25 

1.50 

1.75 

2. O0 

2.50 

3.OO 

3.50 

4.00 

4.50 

5. O0 

6. O0 

8. O0 

2.074221 

1.21392422 

1.40831882 

1.61602104 

1.83607371 

2.31083693 

2.82915405 

3.38873325 

3.98781895 

4.62497359 

5.29898262 

6.75352787 

10.0669068 

1.90368 

0.90935 

1.02703 

1.14259 

1.25794 

1.48874 

1.71992 

1.95143 

2.18328 

2.41549 

2.64810 

3.11455 

4.05257 

1.29217 

1.02971831 

1.06509974 

1.08290669 

1.08928089 

1.08186911 

1.06038764 

1.03283432 

1.00305456 

0.97297853 

0.94357735 

0.88842456 

0.79468303 

1.08958 

-1.35393455 

-1.27728521 

-1.20514728 

-1.13790687 

-1.01795322 

-0.91567353 

-0.82846888 

-0.75382287 

-0.68956106 

-0.63388458 

-0.54271986 

-0.41509594 

1.11890 

-0.53015990 

-0.56721872 

-0.58634345 

-0.59326643 

-O.58520957 

-0.56221098 

-0.53337336 

-0.50305923 

-0.47334361 

-0.44516911 

-0.39464910 

-0.31576056 

-0.59359666 

a Opt imum of W ' =  - 1[K'(P', C)] 2 o v e r  all values of  P' and c. 
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